Oscillatory convection in a rotating layer

نویسنده

  • E. Knobloch
چکیده

The stability of travelling and standing rolls in oscillatory rotating convection is considered from the point of view of equivariant bifurcation theory. To study stability with respect to oblique perturbations the problem is formulated on a rotating rhombic lattice. All primary solution branches with maximal isotropy are determined together with their stability properties using a truncation of the most general equivariant vector field at third order. In addition as many as seven branches of temporally periodic or quasiperiodic solutions with submaximal isotropy may be present. Instabilities analogous to the Kiippers-Lortz instability of steady rolls in rotating convection are uncovered for both travelling rolls and for standing rolls. These instabilities are triggered by the formation of a heteroclinic orbit connecting two travelling roll states or two sets of standing rolls with different wave vectors. Conditions are given for the formation and asymptotic stability of a structurally stable heteroclinic cycle connecting four travelling roll states. The results are compared with recent studies of oscillatory patterns on a rotating square lattice and on a nonrotating rhombic lattice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermal Convection of Rotating Micropolar Fluid in Hydromagnetics Saturating A Porous Medium

This paper deals with the theoretical investigation of the thermal instability of a thin layer of electrically conducting micropolar rotating fluid, heated from below in the presence of uniform vertical magnetic field in porous medium. A dispersion relation is obtained for a flat fluid layer, contained between two free boundaries using a linear stability analysis theory, and normal mode analysi...

متن کامل

Thermosolutal Convection of Micropolar Rotating Fluids Saturating a Porous Medium

Double-diffusive convection in a micropolar fluid layer heated and soluted from below in the presence of uniform rotation saturating a porous medium is theoretically investigated. An exact solution is obtained for a flat fluid layer contained between two free boundaries. To study the onset of convection, a linear stability analysis theory and normal mode analysis method have been used. For the ...

متن کامل

Thermal Convection in a (Kuvshiniski-type) Viscoelastic Rotating Fluid in the Presence of Magnetic Field through Porous Medium (TECHNICAL NOTE)

  The effect of magnetic field on an incompressible (Kuvshiniski-Type) viscoelastic rotating fluid heated from below in porous medium is considered. For the case of stationary convection, magnetic field and medium permeability have both stabilizing and destabilizing effect on the thermal convection under some conditions whereas rotation has a stabilizing effect on the thermal convection. In the...

متن کامل

Interacting oscillatory boundary layers and wall modes in modulated rotating convection

Thermal convection in a rotating cylinder near onset is investigated using direct numerical simulations of the Navier–Stokes equations with the Boussinesq approximation in a regime dominated by the Coriolis force. For thermal driving too small to support convection throughout the entire cell, convection sets in as alternating pairs of hot and cold plumes in the sidewall boundary layer, the so-c...

متن کامل

Fully nonlinear oscillatory convection in a rotating layer

Two-dimensional overstable convection in a rotating layer is studied for large Taylor numbers. In this regime, the leading order nonlinearity arises from the distortion of the horizontally averaged temperature profile. Fully nonlinear solutions in the form of traveling and standing waves are obtained via an asymptotic expansion in the Taylor number. The formulation leads to a nonlinear eigenval...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002